4α ,15-Dihydroencelin (3). Colourless crystals, mp 175° (Et₂O); IR $v_{\rm max}^{\rm CCl_4}$ cm⁻¹: 1760 (γ-lactone), 1670 (C=CC=O); MS m/z (rel. int.): 246.126 [M]⁺ (21) (C₁₅H₁₈O₃), 231 [M – Me]⁺ (3), 218 [M – CO]⁺ (3), 97 (71), 95 (79), 69 (100), 55 (98).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+14} \quad \frac{578}{+14} \quad \frac{546}{+20} \quad \frac{436 \text{ nm}}{+53} \text{ CHCl}_3; c \ 0.1$$

Acknowledgements—We thank the Fonds der Chemie and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Bohlmann, F., Zdero, C. (1977) Phytochemistry 16, 786.
- 2. Robinson, H. (1981) Smithsonian Contributions to Botany 51, 1.
- Czerson, H., Bohlmann, F., Stuessy, T. F. and Fischer, N. H. (1979) Phytochemistry 18, 257.
- Bohlmann, F., Jakupovic, J., Ates (Gören), N., Schuster, A., Pickardt, J., King, R. M. and Robinson, H. (1983) *Liebigs Ann. Chem.* 962.

- 5. Herz, W. and Kumar, N. (1979) Phytochemistry 18, 1743.
- Bohlmann, F., Dhar, A. K., Jakupovic, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 838.
- 7. Sims, J. J. and Bergmann, K. A. (1972) Phytochemistry 11,
- Bjeldanes, L. F. and Geissman, T. A. (1971) Phytochemistry 10, 1079.
- Geissman, T. A. and Mukherjee, R. (1968) J. Org. Chem. 33, 656.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 2329.
- 11. Bohlmann, F. and Lonitz, M. (1980) Chem. Ber. 113, 2410.
- Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 1623.
- Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 1189
- Guerreiro, E., Kavka, J., Giodarno, O. and Gros, E. G. (1979) *Phytochemistry* 18, 1235.
- Rodriguez, E., Saunders, B., Grieco, P., Majetick, G. and Oguri, T. (1979) Phytochemistry 18, 1641.

Phytochemistry, Vol. 23, No. 5, pp. 1187-1188, 1984. Printed in Great Britain.

0031-9422/84 \$3.00 + 0.00 Pergamon Press Ltd.

2-ACETOXY-3α,4α-EPOXY-3,4-DIHYDROKAUNIOLIDE FROM GROSVENORIA COELOCAULIS

FERDINAND BOHLMANN, CHRISTA ZDERO, ROBERT M. KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; *Smithsonian Institution, Department of Botany, Washington, DC 20560, U.S.A.

(Revised received 4 November 1983)

Key Word Index-Grosvenoria coelocaulis; Compositae; sesquiterpene lactones; guaianolides.

Abstract—The aerial parts of Grosvenoria coelocaulis gave the known guaianolides dehydroleucodin, desacetoxymatricarin, kauniolide and a new one, 2β -acetoxy- 3α , 4α -epoxy-3, 4-dihydrokauniolide.

Grosvenoria (Compositae, tribe Eupatorieae) is a small genus [1] ranging from central Ecuador into northern Peru, which is placed in the subtribe Critoniinae [2]. So far nothing is known on the chemistry of this genus. We have now investigated Grosvenoria coelocaulis (B. L. Robins.) K. et R. from northern Peru. The aerial parts afforded α -curcumene and α -zingiberene as well as the known guaianolides kauniolide (1) [3], dehydroleucodin [4], desacetoxymatricarin [5] together with a new one, C₁₇H₂₀O₅. The IR spectrum of the latter indicated the presence of a y-lactone and an acetate group (1770, 1738, 1245 cm⁻¹). From the ¹H NMR spectrum (Table 1) the presence of 6\alpha,12-methylene lactone could be deduced. A typical fourfold doublet at $\delta 2.80$ was due to the H-7 signal. Accordingly, its irradiation collapsed the H-13 doublets to singlets, the double doublet at δ 3.63 to a doublet and changed the overlapped multiplet around 2.10 while a quartet at 1.33 collapsed to a triplet. Addition of deuteriobenzene allowed the assignment of all signals by spin decoupling. As H-2 showed a W-coupling with H-5 and an allylic coupling with H-14 the whole sequence leading to the structure 2 could be assigned. The chemical shifts of H-2 and H-3 in combination with the other data indicated a 2-acetoxy derivative of kauniolide where the 3,4-double bond was transformed to an epoxide. Inspection of a model showed that the small coupling $J_{2,3}$ required a trans-orientation of H-2 and H-3, while the chemical shift of H-15 obviously was influenced by the deshielding effect of the lactone oxygen at C-6. This, however, required a 4β -methyl group as the stereochemistry at C-5-C-7 clearly followed from the trans-diaxial couplings of H-5-H-7. Also the observed couplings of H-8 and H-9 nicely agreed with the angles which could be deduced from a model. Thus the new compound is 2β - 1188

Table 1. ¹H NMR spectral data of 2 (400 MHz, TMS as int. standard)

	CDCl ₃	CDCl ₃ -C ₆ D ₆ (2:1)
H-2	5.73 br s	5.54 ddq
H-3	3.65 br s	3.45 br d
H-5	3.33 br d	3.05 br d
H-6	3.63 dd	3.16 dd
H-7	2.80 dddd	2.34 dddd
Η-8α	2.10 m	1.68 dddd
Н-8β	1.33 dddd	0.96 dddd
Η-9α	2.29 br dd	1.94 br dd
Η-9β	2.16 m	1.82 ddd
H-13	6.15 d	5.97 d
H-13'	5.40 d	5.08 d
H-14	1.70 s	1504
H-15	1.65 s	1.50 br s
OAc	2.12 s	1.90 s

J (Hz): 2, 3 = 2; 2, 5 = 2, 14 \sim 1; 5, 6 = 6, 7 = 10; 5, 14 \sim 1; 7, 8 α = 3; 7, 8 β = 11; 7, 13 = 3.5; 7, 13' = 3; 8 α , 8 β = 13; 8 α , 9 α \sim 1; 8 α , 9 β = 6; 8 β , 9 α = 12; 8 β , 9 β = 1.5; 9 α , 9 β = 14.

acetoxy- 3α , 4α -epoxy-3, 4-dihydrokauniolide (2). The chemotaxonomic relevance of such guaianolides may be shown by further investigations of *Grosvenoria* species as well as of species of other genera placed in the subtribe Critoniinae. So far sesquiterpene lactones only are reported from *Critonia* species [6, 7]. Guaianolides closely related to those isolated now were isolated from *Kaunia* species [3], a genus of the related subtribe Oxylobinae.

EXPERIMENTAL

The air dried plant material (110 g, voucher RMK 9258, collected in January 1983 in northern Peru) was extracted with Et₂O-petrol-MeOH (1:1:1). The extract obtained was separated first by CC (silica gel) after methanol insoluble parts were removed. The petrol fractions gave by TLC (silica gel, AgNO₃ coated, petrol: detection always by UV-light and spraying with KMnO₄) 10 mg α -curcumene (R_f 0.45) and 50 mg α -zingiberene (R_f 0.40). The combined fractions with Et₂O-petrol (1:1, Et₂O and Et₂O-MeOH, 10:1) were further purified by TLC (silica gel PF 254, Et₂O-petrol, 3:1) leading to a crude fraction containing a methylene lactone (1 H NMR). HPLC (RP 8, MeOH-H₂O, 3:2)

gave 5 mg 1 (R_t 5.4 min), its ¹H NMR spectrum being identical with that of authentic kauniolide. A more polar fraction from the TLC contained a mixture which was not separated by HPLC (RP 8, MeOH-H₂O, 3:2: R_t 4.1 min). TLC (silica gel, CHCl₃-C₆H₆-Et₂O, 2:2:1) gave 15 mg dehydroleucodin (R_f 0.65, identical by ¹H NMR and mp with authentic material), 5 mg desacetoxy matricarin (R_f 0.60) (identical with authentic material by ¹H NMR and mp) and 5 mg 2 (R_f 0.52). Quantities were determined by weight.

 2β -Acetoxy-3α,4α-epoxy-3,4-dihydrokauniolide (2). Colourless crystals, mp 191° (Et₂O). IR $v_{max}^{CHCl_3}$ cm⁻¹: 1770 (γ-lactone), 1738, 1245 (OAc); MS m/z (rel. int.): 304.131 [M]⁺ (4) (calc. for C₁₇H₂₀O₅: 304.131), 289 [M-Me]⁺ (3), 262 [M-ketene]⁺ (33), 261 [289 - CO]⁺ (100), 247 [262 - Me]⁺ (50), 244 [M-HOAc]⁺ (56), 216 [244 - CO]⁺ (61), 135 (95).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+92} \frac{578}{+96} \frac{546}{+107} \frac{436 \text{ nm}}{+173} \text{ CHCl}_3; c \ 0.17$$

Acknowledgements—We thank Dr. L. E. Bishop, Seattle, Washington, for his help and the Fonds der Chemie for financial support.

REFERENCES

- 1. King, R. M. and Robinson, H. (1975) Phytologia 30, 221.
- 2. King, R. M. and Robinson, H. (1980) Phytologia 46, 446.
- Bohlmann, F., Kramp, W., Gupta, R. K., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 2375.
- 4. Bohlmann, F. and Zdero, C. (1972) Tetrahedron Letters 621.
- Holub, M. and Herout, V. (1962) Coll. Czech. Chem. Commun. 27, 2980.
- Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) Chem. Ber. 110, 301.
- Bohlmann, F., Suwita, A., Natu, A. A., Czerson, H. and Suwita, Ant. (1977) Chem. Ber. 110, 3572.